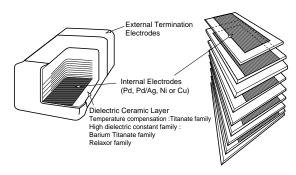
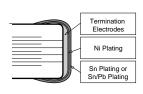


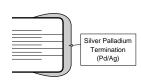

Kyocera's series of Multilayer Ceramic Chip Capacitors are designed to meet a wide variety of needs. We offer a complete range of products for both general and specialized applications, including the general-purpose CM series, the high-voltage CF series, the low profile CT series, and the DN series for automotive uses.


#### **Features**

- We maintain factories worldwide in order to supply our global customer bases quickly and efficiently and to maintain our reputation as the highest-volume producer in the industry.
- All our products are highly reliable due to their monolithic structure of high-purity and superfine uniform ceramics and their integral internal electrodes.
- By combining superior manufacturing technology and materials with high dielectric constants, we produce extremely compact components with exceptional specifications.
- Our stringent quality control in every phase of production from material procurement to shipping ensures consistent manufacturing and superb quality.
- Kyocera components are available in a wide choice of dimensions, temperature characteristics, rated voltages, and terminations to meet specific configurational requirements.







#### **Structure**



Nickel Barrier Termination Products



Silver Palladium Termination Products



## Tape and Reel



#### **Bulk Cassette**



Please contact your local AVX sales office or distributor for specifications not covered in this catalog.

Our products are continually being improved. As a result, the capacitance range of each series is subject to change without notice. Please contact an AVX sales representative to confirm compatibility with your application.





Kyocera Ceramic Chip Capacitors are available for different applications as classified below:

| Series | Dieletric Options                      | Typical Applications                | Features                                                               | Terminations   | Available Size (EIA)                               |
|--------|----------------------------------------|-------------------------------------|------------------------------------------------------------------------|----------------|----------------------------------------------------|
| СМ     | COG (NP0)<br>X5R<br>X7R<br>Y5V<br>NTC* | General Purpose                     | Wide Cap Range                                                         | Nickel Barrier | 0201, 0402, 0603<br>0805, 1206, 1210<br>1812, 2220 |
| CF     | COG (NP0)<br>X7R                       | High Voltage<br>&<br>Power Circuits | High Voltage<br>500VDC, 630VDC<br>1000VDC, 2000VDC<br>3000VDC, 4000VDC | Nickel Barrier | 1206, 1210, 1808<br>1812, 2208, 2220               |
| ст     | COG (NP0)<br>X5R<br>X7R<br>Y5V         | PLCC<br>(Decoupling)                | Low Profile                                                            | Nickel Barrier | 0402, 0805<br>1206, 1210                           |
| *DN/DR | C0G (NP0)<br>U (750)<br>X7R, X8R       | Automotive                          | Thermal shock<br>Resistivity<br>High Reliability                       | Nickel Barrier | 0603, 0805, 1206                                   |
| CD     | X5R                                    | PDP<br>PBX<br>Inverters             | Low Loss<br>Excellent DC bias                                          | Nickel Barrier | 1206, 1210<br>1812, 2220                           |
| CU     | C0G (NP0)                              | RF Circuit                          | Low ESR                                                                | Nickel Barrier | 0402, 0603                                         |
| CA     | COG (NP0)<br>X7R<br>Y5V                | Digital Signal<br>Pass line         | Reduction in<br>Placing Costs                                          | Nickel Barrier | 0508, 0612                                         |
| сх     | Y5U                                    | Power Supply<br>Circuit             | Smoothing                                                              | Nickel Barrier | 1210, 1812<br>2220                                 |

<sup>\*</sup> NTC: Negative Temperature coefficient types are available on request.

<sup>\*</sup> DN, CX Series: Silver Palladium termination is available on request.



| KYOCERA PART NUME                                                                                                                                                   | BER:                                                                                                  | СМ                                                       | 21 | X7R | 104 | K | 50 | Α | Т |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----|-----|-----|---|----|---|---|
| SERIES CODE ——                                                                                                                                                      |                                                                                                       |                                                          |    |     |     |   |    |   |   |
| CM = General Purpose CF = High Voltage CT = Low Profile DN/DR = Automotive                                                                                          | CA = Capacitor Arrays CD = Low Loss CU = Low ESR CX = Smoothing                                       |                                                          |    |     |     |   |    |   |   |
| SIZE CODE —                                                                                                                                                         |                                                                                                       |                                                          |    |     |     |   |    |   |   |
| SIZE EIA (EIAJ) 03 = 0201 (0603) 05 = 0402 (1005) 105 = 0603 (1608) F12 = 0508 (1220) F13 = 0612 (1632)                                                             | SIZE EIA (EIAJ) 21 = 0805 (2012) 316 = 1206 (3216) 32 = 1210 (3225) 42 = 1808 (4520) 43 = 1812 (4532) | <b>SIZE EIA (EIAJ)</b> 52 = 2208 (5720) 55 = 2220 (5750) |    |     |     |   |    |   |   |
| DIELECTRIC CODE —                                                                                                                                                   |                                                                                                       |                                                          |    |     |     |   |    |   |   |
| CODE EIA CODE  CG = C0G (NPO)  X5R = X5R  X7R = X7R  X8R = X8R  Y5V = Y5V  Y5U = Y5U  Negative dielectric types are available.                                      | ailable on request.                                                                                   |                                                          |    |     |     |   |    |   |   |
| CAPACITANCE CODE                                                                                                                                                    |                                                                                                       |                                                          |    |     |     |   |    |   |   |
| Capacitance expressed in pF. 2 number of zeros. For Values < $10pF$ , Letter R der eg. $100000pF = 104$ $0.1\mu F = 104$ $4700pF = 472$ $1.5pF = 1R5$ $0.5pF = R50$ |                                                                                                       |                                                          |    |     |     |   |    |   |   |
| TOLERANCE CODE -                                                                                                                                                    |                                                                                                       |                                                          |    |     |     |   |    |   |   |
| $B = \pm 0.1 pF$ $F = \pm 1\%$<br>$C = \pm 0.25 pF$ $G = \pm 2\%$<br>$D = \pm 0.5 pF$ $J = \pm 5\%$                                                                 | $K = \pm 10\%$<br>$M = \pm 20\%$<br>Z = -20  to  +80%                                                 |                                                          |    |     |     |   |    |   |   |
| VOLTAGE CODE —                                                                                                                                                      |                                                                                                       |                                                          |    |     |     |   |    |   |   |
| 10 = 10VDC 200 =<br>16 = 16VDC 250 =<br>25 = 25VDC 500 =                                                                                                            | 100VDC 1000 = 1000\\ 200VDC 2000 = 2000\\ 250VDC 3000 = 3000\\ 500VDC 4000 = 4000\\ 630VDC            | VDC<br>VDC                                               |    |     |     |   |    |   |   |
| TERMINATION CODE -                                                                                                                                                  |                                                                                                       |                                                          |    |     |     |   |    |   |   |
| A = Nickel Barrier<br>B = Silver Palladium (*option)                                                                                                                | C = Silver (*option)                                                                                  |                                                          |    |     |     |   |    |   |   |
| PACKAGING CODE —                                                                                                                                                    |                                                                                                       |                                                          |    |     |     |   |    |   |   |
| B = Bulk C = Bulk Cassette T = 7" Reel Taping & 4mm C L = 13" Reel Taping & 4mm C H = 7" Reel Taping & 2mm C N = 13" Reel Taping & 2mm C                            | Cavity pitch<br>Cavity pitch                                                                          |                                                          |    |     |     |   |    |   |   |



## **High Dielectric Constant**

| EIA Dielectric | Temperature Range | ∆Cmax       |
|----------------|-------------------|-------------|
| X5R            | –55 to 85°C       |             |
| X7R            | –55 to 125°C      | ±15%        |
| X8R            | –55 to 150°C      |             |
| Y5U            | −30 to 85°C       | +22 to -56% |
| Y5V            | −30 to 85°C       | +22 to -82% |

## **Temperature Compensation Type**

| Electric Code<br>Value (pF) | 1B/C0G | P∆<br>N150 | R∆<br>N220 | S∆<br>N330 | T∆<br>N470 | U∆<br>N750 | SL<br>+350 to -1000 |
|-----------------------------|--------|------------|------------|------------|------------|------------|---------------------|
| 0.5-2.7                     | CK     | PK         | RK         | SK         | TK         | UK         | SL                  |
| 3.0-3.9                     | Cl     | PJ         | RJ         | SJ         | TJ         | UJ         | SL                  |
| 4.0-9.0                     | СН     | PH         | RH         | SH         | TH         | UJ         | SL                  |
| ≥10                         | CG     | PH         | RH         | SH         | TH         | UJ         | SL                  |

 $K=\pm250ppm/^{\circ}C,\,J=\pm120ppm/^{\circ}C,\,H=\pm60ppm/^{\circ}C,\,G=\pm30ppm/^{\circ}C$ 

e.g. CG =  $0\pm30$ ppm/°C, PH =  $-150\pm60$ ppm/°C

Note: All parts will be marked as "CG" but will conform to the above table.

#### **Available Tolerances**

Dielectric materials, capacitance values and tolerances are available in the following combinations only:

| EIA Dielectric | Standard Tolerance | Capacitance |
|----------------|--------------------|-------------|
|                | *3 C=±0.25pF       | ≤5pF        |
|                | *5 D=±0.50pF       | *2 <10pF    |
| COG<br>NTC *1  | *4 J=±5%           | >40=F       |
| NI O           | K=±10%             | ≥10pF       |
|                | M=±20%             | E12 Series  |
| X5R            | *6 K=±10%          | F0.0 :      |
| X7R            | M=±20%             | E6 Series   |
| VEIL           | M=±20%             | F0.0 :      |
| Y5U            | Z=-20% to +80%     | E3 Series   |
| Y5V            | Z=-20% to +80%     | E3 Series   |

#### Note:

#### **E Standard Number**

| E3  | E6  | E12 | E24 (C | ption)                                          |  |  |  |  |  |
|-----|-----|-----|--------|-------------------------------------------------|--|--|--|--|--|
|     | 1.0 | 1.0 | 1.0    | 1.1                                             |  |  |  |  |  |
| 1.0 | 1.0 | 1.2 | 1.2    | 1.3                                             |  |  |  |  |  |
| 1.0 | 1.5 | 1.5 | 1.5    | 1.6                                             |  |  |  |  |  |
|     | 1.5 | 1.8 | 1.8    | 2.0                                             |  |  |  |  |  |
|     | 2.2 | 2.2 | 2.2    | 2.4                                             |  |  |  |  |  |
| 2.2 | 2.2 | 2.7 | 2.7    | 2.2     2.4       2.7     3.0       3.3     3.6 |  |  |  |  |  |
| 2.2 | 3.3 | 3.3 | 3.3    | 2.0<br>2.4<br>3.0<br>3.6<br>4.3<br>5.1          |  |  |  |  |  |
|     | 3.3 | 3.9 |        |                                                 |  |  |  |  |  |
|     | 4.7 | 4.7 | 4.7    | 5.1                                             |  |  |  |  |  |
| 4.7 | 4.7 | 5.6 | 5.6    | 6.2                                             |  |  |  |  |  |
| 4.7 | 6.8 | 6.8 | 6.8    | 7.5                                             |  |  |  |  |  |
|     | 0.0 | 8.2 | 8.2    | 9.1                                             |  |  |  |  |  |

<sup>\*1</sup> NTC : Negative Temperature Compensation types are available on request as shown on product pages.

<sup>\*2</sup> Nominal values below 10pF are available in the standard values of 0.5pF, 1.0pF, 1.5pF, 2.0pF, 3.0pF, 4.0pF, 5.0pF, 6.0pF, 7.0pF, 8.0pF, 9.0pF, 10pF.

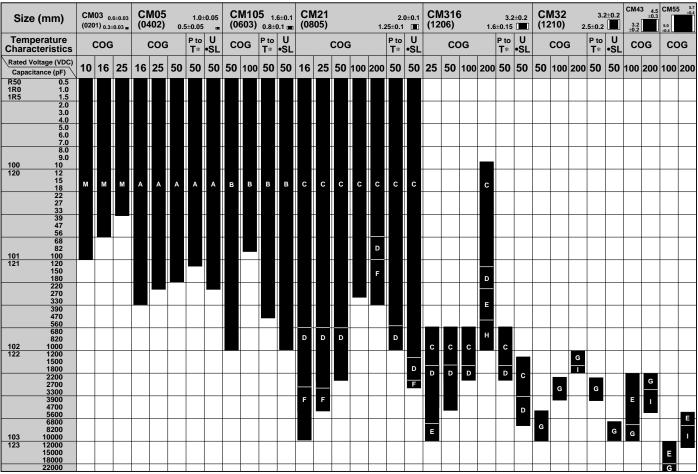
<sup>\*3</sup> B =  $\pm 0.1$ pF is available for 5pF and below on request.

<sup>\*4</sup> F =  $\pm 1\%$  or G =  $\pm 2\%$  is available for C >10pF on request.

<sup>\*5</sup> C =  $\pm 0.25$ pF is available for values 5pF< C < 10pF on request.

<sup>\*6</sup> J =  $\pm$ 5% for X7R(X5R) is available on request.




#### **Features**

## **Application**

We offer a diverse product line ranging from ultra-compact (0.6×0.3 mm) to large (5.7×5.0 mm) components configured for a variety of temperature characteristics, rated voltages, and packages. We offer the choice and flexibility for almost any applications.

This standard type is ideal for use in a wide range of applications, from commercial to industrial equipment.

## **Temperature Compensation Dielectrics**



E12 series:Standard, E24 series:Option P TΔ:Option

| Size                 | CM03     | CM05     | CM105    |          | CM21, CM316, CM32 |          |          |          |           |           |         |         |  |  |
|----------------------|----------|----------|----------|----------|-------------------|----------|----------|----------|-----------|-----------|---------|---------|--|--|
| Thickness            | M        | Α        | В        | C        | D                 | E        | F        | G        | H         |           | Ο       | V       |  |  |
| (mm)                 | 0.3±0.03 | 0.5±0.05 | 0.8±0.1  | 0.6±0.1  | 0.85±0.1          | 1.15±0.1 | 1.25±0.1 | 1.4max   | 1.6 max   | 1.6±0.15  | 2.0±0.2 | 2.5±0.2 |  |  |
| Taping(178 dia reel) | 15kp(P8) | 10kp(P8) | 4kp(P8)  | 4kp(P8)  | 4kp(P8)           | 3kp(E8)  | 3kp(E8)  | 3kp(E8)  | 2.5kp(E8) | 2.5kp(E8) | 2kp(E8) | 1kp(E8) |  |  |
| Taping(330 dia reel) |          | 50kp(P8) | 10kp(P8) | 10kp(P8) | 10kp(P8)          | 10kp(E8) | 10kp(E8) | 10kp(E8) | 5kp(E8)   | 5kp(E8)   | 5kp(E8) |         |  |  |

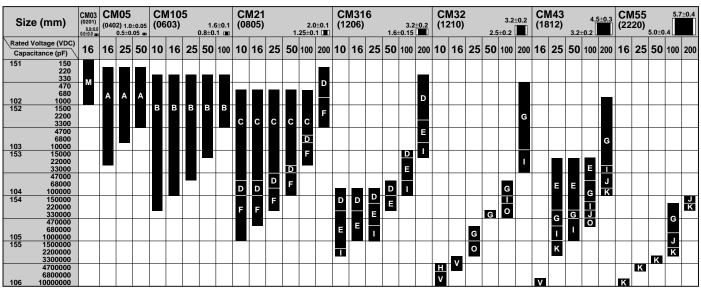
| Size                 |            | CM43, CM55    |          |          |          |            |            |  |  |  |  |  |  |  |
|----------------------|------------|---------------|----------|----------|----------|------------|------------|--|--|--|--|--|--|--|
| Thickness            | E          | G             |          | J        | 0        | K          | V          |  |  |  |  |  |  |  |
| (mm)                 | 1.15±0.1   | 1.4max        | 1.6±0.15 | 2.0max   | 2.0±0.2  | 2.5max     | 2.5±0.2    |  |  |  |  |  |  |  |
| Taping(178 dia reel) | 1.5kp(E12) | *1 1.5kp(E12) | 1kp(E12) | 1kp(E12) | 1kp(E12) | 0.5kp(E12) | 0.5kp(E12) |  |  |  |  |  |  |  |
| Taping(330 dia reel) |            |               |          |          |          |            |            |  |  |  |  |  |  |  |

Note: P8 = 8mm width paper tape

E8 = 8mm width plastic tape

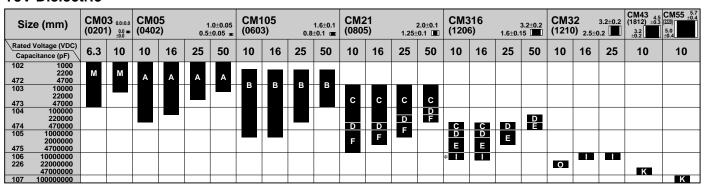
E12 = 12mm width plastic tape

\*1 1kp for CM55




#### X5R Dielectric

| Siz        | e (mm)                         | CM0<br>(0201 | 3<br>0.0±0.0<br>0.0±0.0 æ | CM<br>(040 | 05<br>(2) | 1<br>0.5 | 1.0±0.05<br>±0.05 m | CM1<br>(0603 | 05<br>3) |    |    | 1.6±0.1<br>:0.1 <b>=</b> □ | CM2<br>(080 |    |    |    | 2.0±0.1<br>0.1 ■ |     |    |    | 1.6±0.1 |    | CM3<br>(121 | 32<br>0) <sub>2.5±</sub> | 3.2±0.2<br>0.2 | CM43<br>(1812)<br>3.2±0 | 4.5±0.3 |
|------------|--------------------------------|--------------|---------------------------|------------|-----------|----------|---------------------|--------------|----------|----|----|----------------------------|-------------|----|----|----|------------------|-----|----|----|---------|----|-------------|--------------------------|----------------|-------------------------|---------|
|            | Voltage (VDC)                  | 10           | 16                        | 10         | 16        | 25       | 50                  | 6.3          | 10       | 16 | 25 | 50                         | 6.3         | 10 | 16 | 25 | 50               | 6.3 | 10 | 16 | 25      | 50 | 10          | 16                       | 25             | 10                      | 25      |
| 151        | 150<br>220<br>330              |              |                           |            |           |          |                     |              |          |    |    |                            |             |    |    |    |                  |     |    |    |         |    |             |                          |                |                         |         |
| 102        | 470<br>680<br>1000             | М            | М                         | Α          | A         | А        | А                   |              |          |    |    |                            |             |    |    |    |                  |     |    |    |         |    |             |                          |                |                         |         |
| 152        | 1500<br>2200<br>3300           |              |                           |            |           |          |                     | В            | В        | В  | В  | В                          | С           | С  | С  | С  | С                |     |    |    |         |    |             |                          |                |                         |         |
| 103        | 4700<br>6800<br>10000          |              |                           |            |           |          |                     |              |          |    |    |                            |             |    |    |    |                  |     |    |    |         |    |             |                          |                |                         |         |
| 103<br>153 | 15000<br>22000<br>33000        |              |                           |            |           |          |                     |              |          |    |    |                            |             |    |    |    | D                |     |    |    |         |    |             |                          |                |                         |         |
| 104        | 47000<br>68000<br>100000       |              |                           |            |           |          |                     |              |          |    |    |                            | D           | D  | D  | D  | F                |     |    |    |         | D  |             |                          |                |                         |         |
| 104<br>154 | 150000<br>220000<br>330000     |              |                           |            |           |          |                     | *            | *        |    |    |                            | F           | F  | F  | F  |                  | D   | D  | D  | D<br>F  | Е  |             |                          |                |                         |         |
| 105<br>155 | 470000<br>680000<br>1000000    |              |                           |            |           |          |                     | * * *        | *        |    |    |                            |             |    |    |    |                  | E   | Е  | Е  |         |    |             |                          | G              |                         |         |
| 155        | 1500000<br>2200000<br>3300000  |              |                           |            |           |          |                     |              |          |    |    |                            | *           |    |    |    |                  |     | H  |    |         |    |             |                          | 0              |                         |         |
| 106        | 4700000<br>6800000<br>10000000 |              |                           |            |           |          |                     |              |          |    |    |                            | *           |    |    |    |                  | *   |    |    |         |    | О           | V                        | V              |                         | V       |
| 156        | 15000000<br>22000000           |              |                           |            |           |          |                     |              |          |    |    |                            |             |    |    |    |                  |     |    |    |         |    |             |                          |                | 0                       |         |

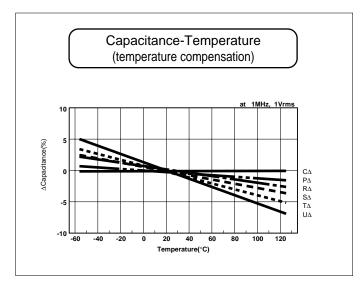

X5R E6 series : Standard, E12 series : Option

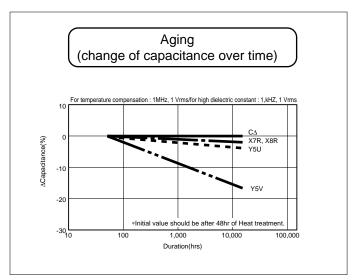
#### X7R Dielectric

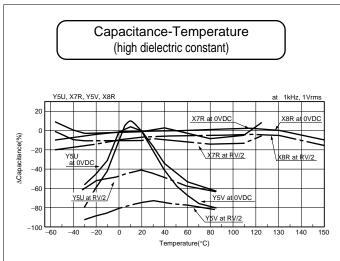


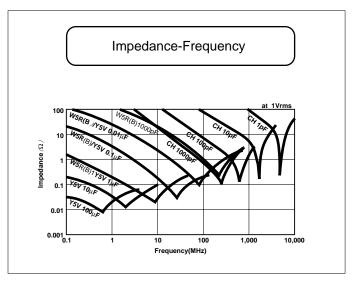
X7R E6 series : Standard, E12 series : Option

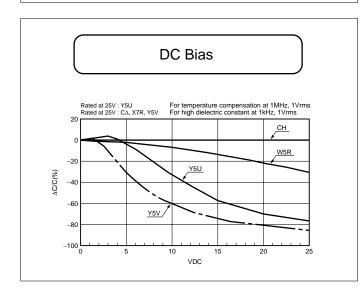
#### Y5V Dielectric

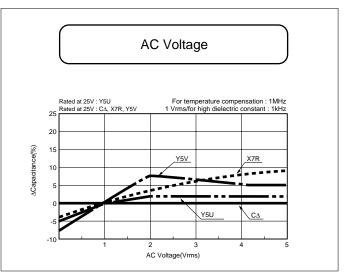




Y5V E3 series : Standard, E6 series : Option


<sup>\*</sup> Dimentional tolerances (L, W, T) is ±0.15mm for 105X5R334 to 105, 21X5R335 to 475. ±0.2mm for 316X5R685 to106


<sup>\*</sup> Tolerance (W, T) for CM316Y5V106 is ±0.20mm.














Please verify individual characteristics at the design stage to ensure total suitability



# Test conditions and Specification for Temperature Compensation type(C\* to U\* • SL characteristics)

| Tes                            | t Items           | Specification (C: nominal capacitance)                        | Test Conditions                                                                                          |
|--------------------------------|-------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Capacitance                    | e Value           | Within tolerance                                              | C≤1000pF 1MHz±10% 0.5 to                                                                                 |
| Q                              |                   | C≥30pF: Q≥1000<br>C<30pF: Q≥400+20C                           | C>1000pF 1kHz±10% 5Vrms                                                                                  |
| Insulation re                  | esistance (IR)    | 10,000MΩ or 500MΩ•μF min, whichever is less                   | Measured after the rated voltage is applied for one minute at normal room temperature and humidity. (*5) |
| Dielectric R                   | esistance         | No problem observed                                           | (*1) Apply 3 times of the rated voltage for 1 to 5 seconds                                               |
| Appearance                     | •                 | No problem observed                                           | Microscope(10×magnification)                                                                             |
| Termination                    | strength *2       | No problem observed                                           | Apply a sideward force of 500g(5N) to a PCB-mounted sample.                                              |
| Bending str                    | ength *2          | No mechanical damage at 1mm bent                              | Glass epoxy PCB (t=1.6mm); fulcrum<br>Spacing: 90mm; for 10 seconds.                                     |
| Vibration                      | Appearance        | No significant change is detected.                            | Vibration frequency: 10 to 55(Hz)                                                                        |
| test                           | ΔC                | Within tolerance                                              | Amplitude: 1.5mm<br>Sweeping condition: 10→55→10Hz/min                                                   |
|                                | Q                 | C≥30pF: Q≥1000<br>C<30pF: Q≥400+20C                           | In X, Y and Z directions:<br>2 hours each Total 6 hours                                                  |
| Soldering<br>heat              | Appearance        | No significant change is detected.                            | Soak the sample in 270°C±5°C solder for 10±0.5seconds(*3)                                                |
| resistance                     | ΔC                | ±2.5% or ±0.25pF max, whichever is larger.                    | and place in a room at normal temperature                                                                |
|                                | Q                 | C≥30pF: Q≥1000<br>C<30pF: Q≥400+20C                           | and humidity; measure after 24±2hours. (Preheating Conditions)                                           |
|                                | IR                | 10,000MΩ or 500MΩ•μF min, whichever is smaller                | Order Temperature Time  1 80 to 100°C 2minutes                                                           |
| Withstand voltage              |                   | Resists without problem                                       | 2 150 to 200°C 2minutes                                                                                  |
| Solderabilit                   | v                 | Ni/Br termination: 90% min                                    | Soak the sample in 230°C±5°C                                                                             |
|                                |                   | Ag/Pd termination: 75% min                                    | Sn62 solder for 4±1second                                                                                |
| Temperature cycle *4           | Appearance        | No significant change is detected.                            | (Cycle)  Normal room temperature (3min)→                                                                 |
|                                | ΔC                | ±2.5% or ±0.25pF max, whichever is larger.                    | Lowest operation temperature (30min)→                                                                    |
|                                | Q                 | C≥30pF: Q≥1000<br>C<30pF: Q≥400+20C                           | Normal room temperature (3min)→<br>Highest operation temperature (30min)→                                |
|                                | IR                | 10,000MΩ or 500MΩ•μF min, whichever is samller                | After five cycles(*4), measure after                                                                     |
|                                | Withstand voltage | Resists without problem                                       | 24±2hours.                                                                                               |
| Humidity                       | Appearance        | No significant change is detected.                            | Measure the test sample after storing it                                                                 |
| test<br>*6                     | ΔC                | ±7.5% or ±0.75pF max, whichever is larger.                    | 24±2hours at a temperature of 40°C±2°C and a relative humidity of 90-95% Rh.                             |
|                                | Q                 | C≥30pF: Q≥200<br>C<30pF: Q≥100+10C/3                          | for 500+24/–0hours.                                                                                      |
|                                | IR                | 500MΩ or 25MΩ•μF min, whichever is smaller                    |                                                                                                          |
| High-                          | Appearance        | No significant change is detected.                            | After applying(*1) twice of the rated voltage                                                            |
| temperature<br>with<br>loading | ΔC                | ±3% or ±0.3pF max, whichever is larger.                       | at a temperature of 125±3 for 1000+48/–0hours, measure the sample                                        |
| oading                         | Q                 | C≥30pF: Q≥350<br>10pF≤C<30pF: Q≥275+5C/2<br>C<10pF: Q≥200+10C | after storing 24±2hours.                                                                                 |
|                                | IR                | 1,000MΩ or 50MΩ•μF min, whichever is smaller                  |                                                                                                          |
|                                |                   | <u> </u>                                                      |                                                                                                          |

<sup>\*1</sup> For the CF series, use 1.5 times when the rated voltage is 500V; use a 1.2 times when the rated voltage exceeds 1000V. The charge and discharge current of the capacitor must not exceed 50mA.

<sup>\*2</sup> Except CT series

<sup>\*3 3±0.5</sup> seconds for Silver Palladium terminations.

<sup>4 1000</sup> cycles for Nickel Barrier termination DN series. (Alumina Substrate)

<sup>\*5</sup> For the CF series over 1000V, apply 500V for 1minute at normal room temperature and humidity.

<sup>\*6</sup> Exclude capacitors with rated voltage of over 200V.





# Test conditions and Specification for High Dielectric Type (X5R, X7R, Y5V & Y5U)

| Tes                  | t Items           |                                                             | Specification                                                |                                                    | т                                                                                   | est Condition                                     |                                 |  |  |
|----------------------|-------------------|-------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------|--|--|
|                      |                   | X7R/X5R                                                     | Y5U                                                          | Y5V                                                | Do previous tre                                                                     |                                                   |                                 |  |  |
| Capacitance          | e Value           | Within tolerance                                            |                                                              |                                                    | Capacitance                                                                         | <del></del>                                       | Vol                             |  |  |
| tanδ(%)              |                   | 2.5%max, 3.5%max(*2)<br>0.4%max(*13), 5.0%max(*3)           | 5.0%max(*12)                                                 | 5.0%max, 7.0%max(*14)<br>9.0%max(*4), 12.5%max(*5) | C≤10μF<br>C>10μF                                                                    | 1kHz±10%<br>120Hz±10%                             | 1.0±0.1Vrms<br>0.5±0.1Vrms      |  |  |
| Insulation re        | esistance (IR)    | 10,000MΩ or 500MΩ                                           | •μF max, whichever i                                         | s less                                             | Measured after the rat normal room temp                                             | ated voltage is app<br>perature and humid         | lied for 2minutes<br>ity. (*11) |  |  |
| Dielectric R         | esistance *1      | No problem observed                                         | o problem observed (*1) Apply 2.5 times of the rated voltage |                                                    |                                                                                     |                                                   |                                 |  |  |
| Appearance           | •                 | No problem observed                                         | t                                                            |                                                    | Microscope(10>                                                                      | <magnification< td=""><td>)</td></magnification<> | )                               |  |  |
| Termination          | strength *6       | No problem observed                                         | d                                                            | Apply a sideward for sample.                       | ce of 500g(5N) to a                                                                 | a PCB-mounted                                     |                                 |  |  |
| Bending str          | ength test *6     | No problem observed                                         | d at 1mm bent                                                | Glass epoxy PCB (t=<br>Spacing: 90mm; for          |                                                                                     |                                                   |                                 |  |  |
| Vibration            | Appearance        | No significant change                                       | e is detected.                                               | Vibration freque<br>Amplitude: 1.5r                | •                                                                                   | Hz)                                               |                                 |  |  |
| test                 | ΔC                | Within tolerance                                            |                                                              |                                                    | Sweeping cond<br>In X, Y and Z d                                                    | lition: 10→55–                                    | →10Hz/min                       |  |  |
|                      | tanδ(%)           | Satisfies the initial va                                    | llue.                                                        |                                                    | 2 hours each To                                                                     |                                                   |                                 |  |  |
| Soldering<br>heat    | Appearance        | No significant change                                       | e is detected.                                               |                                                    | Do previous tre<br>Soak the samp                                                    |                                                   | С                               |  |  |
| resistance           | ΔC                | Within ±7.5%                                                | Within ±20%                                                  | Within ±20%                                        | solder for 10±0 and place in a r                                                    | .5seconds(*7)                                     |                                 |  |  |
|                      | tanδ(%)           | Satisfies the initial va                                    | llue.                                                        |                                                    | and humidity; m<br>(Preheating Co                                                   |                                                   | 18±4hours.                      |  |  |
|                      | IR                | 10,000M $\Omega$ or 500M $\Omega$                           | •μF max, whichever i                                         | Order T                                            | emperature<br>30 to 100°C                                                           | Time<br>2minutes                                  |                                 |  |  |
|                      | Withstand voltage | Resists without probl                                       | em                                                           |                                                    | 1 80 to 100°C 2minut 2 150 to 200°C 2minut                                          |                                                   |                                 |  |  |
| Solderability        | y                 | Ni/Br termination: 90 <sup>o</sup><br>Ag/Pd termination: 75 |                                                              |                                                    | Soak the sampl<br>Sn62 solder for                                                   |                                                   | С                               |  |  |
| Temperature cycle *8 | Appearance        | No significant change                                       | e is detected.                                               |                                                    | Do previous treatment(*9) (Cycle)                                                   |                                                   |                                 |  |  |
| *8                   | ΔC                | Within ±7.5%                                                | Within ±20%                                                  | Within ±20%                                        | Normal room te<br>Lowest operation                                                  |                                                   |                                 |  |  |
|                      | tanδ(%)           | Satisfies the initial va                                    | llue.                                                        |                                                    | Normal room te<br>Highest operati                                                   |                                                   |                                 |  |  |
|                      | IR                | 10,000M $\Omega$ or 500M $\Omega$                           | •μF max, whichever i                                         | s smaller                                          | After five cycles                                                                   | s(*8), measure                                    | after                           |  |  |
|                      | Withstand voltage | Resists without probl                                       | em                                                           |                                                    | 40±4110u15.                                                                         |                                                   |                                 |  |  |
| Humidity<br>test     | Appearance        | No significant change                                       | e is detected.                                               |                                                    | Do previous tre<br>After storing it a                                               |                                                   | re of                           |  |  |
| test<br>*12          | ΔC                | Within ±12.5%                                               | Within ±30%                                                  | Within ±30%                                        | 40°C±2°C and                                                                        | a relative hum                                    | idity of                        |  |  |
|                      | tanδ(%)           | 200% max of initial value                                   | 150%<br>initial                                              | max of<br>value                                    | 90-95% for 500<br>the sample afte                                                   |                                                   |                                 |  |  |
|                      | IR                | 500MΩ or 25MΩ•μF                                            | max, whichever is sm                                         | aller                                              |                                                                                     |                                                   |                                 |  |  |
| High-<br>temperature | Appearance        | No significant change                                       | e is detected.                                               |                                                    | Do previous tre                                                                     | ` ,                                               | a rated                         |  |  |
| with<br>loading      | ΔC                | Within ±12.5%                                               | Within ±30%                                                  | Within ±30%                                        | After applying twice (*1) of the rated voltage at the highest operating temperature |                                                   |                                 |  |  |
|                      | tanδ(%)           | 200% max of initial value                                   |                                                              | 6 max of<br>I value                                | for 1000+48/–0hours, measure the sample after storing 48±4hours.                    |                                                   |                                 |  |  |
|                      | IR                | 1,000MΩ or 50MΩ•μ                                           | F max, whichever is s                                        |                                                    |                                                                                     |                                                   |                                 |  |  |

<sup>\*1</sup> For CF series, use 1.5 times when the rated voltage is 250V and 500V; Use 1.2 times when the rated voltage exceeds 630V. The charge/discharge current of the capacitor must not exceed 50mA.

Apply to X5R 16V/25V type, X7R 10V/16V type, CM316X7R564 to 105(25V type).
 Apply to X5R 6.3V/10V type, CT05X7R123 to 223(10V type),X7R 6.3V type.

 $<sup>^*4</sup>$  Apply to Y5V 16V type, CM32Y5V335 to 106 (25V Type). Except 12.5% for CT21Y5V105/16V.

<sup>\*5</sup> Apply to Y5V 6.3V/10V type.
\*6 Exclude CT series with thickness of less than 0.66mm.

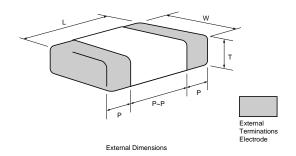
<sup>\*7</sup>  $3\pm0.5$  sec. for AgPd termination.

<sup>\*8 1000</sup> cycles for Nickel Barrier termination DN/DR series. (Alumina Substrate)

Keep specimen at 150°C+0/-10°C for one hour, leave specimen at room ambient for 48±4 hours.

<sup>\*10</sup> Apply the same test condition for one hour, then leave the specimen at room ambient for 48±4 hours.

<sup>\*11</sup> For the CF series over 1000V, apply 500V for 1 minutes at room ambient.


<sup>\*12</sup> Exclude capacitors with rated voltage of over 200V. \*13 apply to CD series.

<sup>\*14</sup> Apply to 25V series of CM105 Y5V 154 over, CM21Y5V105 over, 316Y5V155 over.

<sup>\*15</sup> Measurement condition 1kHz, 1Vrms for Y5V, C < 47µF type.



## **Dimensions**



## Tape & Reel

| Tape | * 11001  |           |          |           |         |          |            |       |
|------|----------|-----------|----------|-----------|---------|----------|------------|-------|
| Size | EIA CODE | EIAJ CODE |          |           | Dimensi | ons (mm) |            |       |
| Oize | LIA GODE | LIAU OODL | L        | w         | P min   | P max    | P to P min | T max |
| 03   | 0201     | 0603      | 0.6±0.03 | 0.3±0.03  | 0.10    | 0.20     | 0.20       | 0.33  |
| 05   | 0402     | 1005      | 1.0±0.05 | 0.5±0.05  | 0.10    | 0.35     | 0.30       | 0.55  |
| 105  | 0603     | 1608      | 1.6±0.10 | 0.8±0.10  | 0.20    | 0.60     | 0.50       | 0.90  |
| 21   | 0805     | 2012      | 2.0±0.10 | 1.25±0.10 | 0.20    | 0.75     | 0.70       | 1.35  |
| 316  | 1206     | 3216      | 3.2±0.20 | 1.60±0.15 | 0.30    | 0.85     | 1.40       | 1.80  |
| 32   | 1210     | 3225      | 3.2±0.20 | 2.50±0.20 | 0.30    | 1.00     | 1.40       | 2.70  |
| 42   | 1808     | 4520      | 4.5±0.30 | 2.00±0.20 | 0.15    | 0.85     | 2.00       | 2.20  |
| 43   | 1812     | 4532      | 4.5±0.30 | 3.20±0.20 | 0.30    | 1.10     | 2.00       | 2.70  |
| 52   | 2208     | 5720      | 5.7±0.40 | 2.00±0.20 | 0.15    | 0.85     | 4.20       | 2.20  |
| 55   | 2220     | 5750      | 5.7±0.40 | 5.00±0.40 | 0.30    | 1.40     | 2.50       | 2.80  |

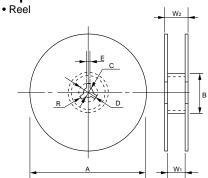
<sup>•</sup> CX43 Type L : 4.7±0.4mm

## **Bulk Cassette**

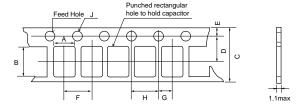
| Sino (mm) |          | w        | P                | •    | P to P |      |
|-----------|----------|----------|------------------|------|--------|------|
| Size (mm) | L        | VV       | •                | min  | max    | min  |
| 0603      | 1.6±0.07 | 0.8±0.07 | 0.8±0.07         | 0.10 | 0.60   | 0.50 |
| 0805      | 2.0±0.1  | 1.25±0.1 | 0.6±0.1/1.25±0.1 | 0.25 | 0.75   | 0.80 |
| 1206      | 3.2±0.1  | 1.6±0.1  | 0.6±0.1          | 0.25 | 0.85   | 1.50 |

<sup>•</sup> CT21, CT316 : (L) 3.2±0.2mm and (W)1.6±0.2mm

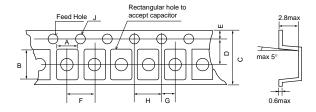
<sup>•</sup> T (Thickness) depends on capacitance value.


Standard thickness is shown on the appropriate product pages.

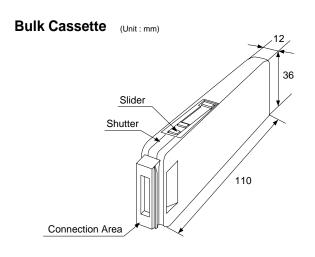
<sup>DR series 105, 21 size (L)(W)(T) Tolerance ±0.15mm
CA series (please refer product specifications)</sup> 







## **Tape and Reel**




• Carrier tape (Paper Carrier Tape)



(Plastic Carrier Tape)



• Package quantity (Shown on the appropriate product pages.)



## Reel (code: T)

(Unit:mm)

| Code<br>Reel                  | A       | В                   | С                     | D      |
|-------------------------------|---------|---------------------|-----------------------|--------|
| 7-inch Reel<br>(CODE : T, H)  | 178±2.0 | φ60min              | 13±0.5                | 21+0.8 |
| 13-inch Reel<br>(CODE : L, N) | 330±2.0 | φ100±1.0            | 13±0.5                | 21±0.6 |
| Code                          |         |                     |                       |        |
| Reel                          | Е       | <b>W</b> 1          | W2                    | R      |
|                               | 2.0+0.5 | <b>W</b> 1 10.0±1.5 | <b>W</b> <sub>2</sub> | 1.0    |

<sup>\*</sup>Carrier tape width 8mm. For size 42(1808) or over, Tape width 12mm and W1 : 14 $\pm$ 1.5, W2 : 20.5mm max

#### **Carrier Tape**

(Unit:mm)

| Type          | A         | В         |
|---------------|-----------|-----------|
| 03 (0.6×0.3)  | 0.37±0.03 | 0.67±0.03 |
| 05 (1.0×0.5)  | 0.65±0.1  | 1.15±0.1  |
| 105 (1.6×0.8) | 1.0±0.2   | 1.8±0.2   |
| 12 (2.0×1.25) | 1.5±0.2   | 2.3±0.2   |
| 13 (3.2×1.6)  | 2.0±0.2   | 3.6±0.2   |
| 21 (2.0×1.25) | 1.50±0.2  | 2.3±0.2   |
| 316 (3.2×1.6) | 2.0±0.2   | 3.6±0.2   |
| 32 (3.2×2.5)  | 2.9±0.2   | 3.6±0.2   |
| 42 (4.5×2.0)  | 2.4±0.2   | 4.9±0.2   |
| 43 (4.5×3.2)  | 3.6±0.2   | 4.9±0.2*  |
| 52 (5.7×2.0)  | 2.4±0.2   | 6.0±0.2   |
| 55 (5.7×5.0)  | 5.3±0.2   | 6.0±0.2   |

<sup>\*</sup>For CX type, B: 5.2±0.2mm

(Unit:mm)

| Code<br>Carrier Tape |      | С        | D                 | E                   | F*      |
|----------------------|------|----------|-------------------|---------------------|---------|
| Paper                | 8mm  | 8.0±0.3  | 3.5±0.05          |                     | 4.0±0.1 |
| Plastic              | 8mm  | 0.0±0.5  | 0.0 <u>+</u> 0.00 | 1.75±0.1            | 4.0±0.1 |
| Piastic              | 12mm | 12.0±0.3 | 5.5±0.05          |                     | 8.0±0.1 |
| Code<br>Carrier Tape |      | G        | Н                 | J                   |         |
| Paper                | 8mm  |          |                   |                     |         |
| Plastic              | 8mm  | 2.0±0.05 | 4.0±0.1           | 1.5 <sup>+0.1</sup> |         |
| FiaStic              | 12mm |          |                   |                     |         |

<sup>\*</sup>For 03, 05type, F: 2.0±0.05mm

## **Package Quantity**

| Туре | Thickness (mm) | Quantity per case (pcs) |
|------|----------------|-------------------------|
| 05   | 0.5            | 50,000                  |
| 105  | 0.8            | 15,000                  |
| 21   | 0.6            | 10,000                  |
|      | 1.25           | 5,000                   |

<sup>\*</sup>CM05 is optional

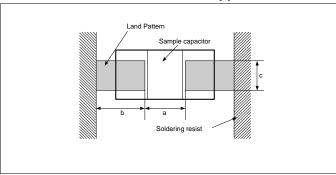
For 42type, 52type  $\,F:4.0\pm0.1mm$ 



# Multilayer Ceramic Chip Capacitors Precautions

#### **Circuit Design**

- 1. Once application and assembly environments have been checked, the capacitor may be used in conformance with the rating and performance which are provided in both the catalog and the specifications. Use exceeding that which is specified may result in inferior performance or cause a short, open, smoking, or flaming to occur, etc.
- 2. Please consult the manufacturer in advance when the capacitor is used in devices such as: devices which deal with human life, i.e. medical devices; devices which are highly public orientated; and devices which demand a high standard of liability.
  - Accident or malfunction of devices such as medical devices, space equipment and devices having to do with atomic power could generate grave consequence with respect to human lives or, possibly, a portion of the public. Capacitors used in these devices may require high reliability design different from that of general purpose capacitors.
- 3. Please use the capacitors in conformance with the operating temperature provided in both the catalog and the specifications.
  - Be especially cautious not to exceed the maximum temperature. In the situation the maximum temperature set forth in both the catalog and specifications is exceeded, the capacitor's insulation resistance may deteriorate, power may suddenly surge and short-circuit may occur.
  - The capacitor has a loss, and may self-heat due to equivalent series resistance when alternating electric current is passed therethrough. As this effect becomes especially pronounced in high frequency circuits, please exercise caution.
  - When using the capacitor in a (self-heating) circuit, please make sure the surface of the capacitor remains under the maximum temperature for usage. Also, please make certain temperature rises remain below 20°C.
- 4. Please keep voltage under the rated voltage which is applied to the capacitor. Also, please make certain the peak voltage remains below the rated voltage when AC voltage is super-imposed to the DC voltage.
  - In the situation where AC or pulse voltage is employed, ensure average peak voltage does not exceed the rated voltage.
  - Exceeding the rated voltage provided in both catalog and specifications may lead to defective withstanding voltage or, in worst case situations, may cause the capacitor to smoke or flame.
- 5. When the capacitor is to be employed in a circuit in which there is continuous application of a high frequency voltage or a steep pulse voltage, even though it is within the rated voltage, please inquire to the manufacturer.
  - In the situation the capacitor is to be employed using a high frequency AC voltage or a extremely fast rising pulse voltage, even though it is within the rated voltage, it is possible capacitor reliability will deteriorate.
- 6. It is a common phenomenon of high-dielectric products to have a deteriorated amount of static electricity due to the application of DC voltage.


  Due caution is necessary as the degree of deterioration varies depending on the quality of capacitor materials, capacity, as well as the load voltage at the time of operation.
- 7. Do not use the capacitor in an environment where it might easily exceed the respective provisions concerning shock and vibration specified in the catalog and specifications.
  - In addition, it is a common piezo phenomenon of high dielectric products to have some Voltage due to vibration or to have noise due to Voltage change. Please contact sales in such case.
- 8. If the electrostatic capacity value of the delivered capacitor is within the specified tolerance, please consider this when designing the respective product in order that the assembled product function appropriately.

#### Storage

- 1. If the component is stored in minimal packaging (a heat-sealed or chuck-type plastic bag), the bag should be kept closed. Once the bag has been opened, reseal it or store it in a desiccator.
- 2. Keep storage place temperature +5 to +35 degree C, humidity 45 to 70% RH.
- 3. The storage atmosphere must be free of gas containing sulfur and chlorine. Also, avoid exposing the product to saline moisture. If the product is exposed to such atmospheres, the terminals will oxidize and solderability will be effected.
- 4. Precautions 1)-3) apply to chip capacitors packaged in carrier tapes and bulk cases.
- 5. The solderability is assured for 12 months from our final inspection date (six months for silver palladium) if the above storage precautions are followed.
- 6. Chip capacitors may crack if exposed to hydrogen (H2) gas while sealed or if coated with silicon, which generates hydrogen gas.



## **Dimensions for recommended typical land**

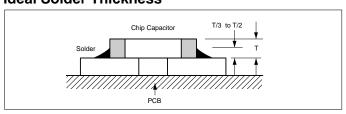


When mounting the capacitor to the substrate, it is important to consider carefully that the amount of solder (size of fillet) used has a direct effect upon the capacitor once it is mounted.

- a) The greater the amount of solder, the greater the stress to the elements. As this may cause the substrate to break or crack, it is important to establish the appropriate dimensions with regard to the amount of solder when designing the land of the substrate.
- b) In the situation where two or more devices are mounted onto a common land, separate the device into exclusive pads by using soldering resist

(Unit: mm)

| Size | L×W      | а            | b            | С            |
|------|----------|--------------|--------------|--------------|
| 03   | 0.6×0.3  | 0.15 to 0.35 | 0.20 to 0.30 | 0.25 to 0.35 |
| 05   | 1.0×0.5  | 0.30 to 0.50 | 0.35 to 0.45 | 0.40 to 0.60 |
| 105  | 1.6×0.8  | 0.70 to 1.00 | 0.80 to 1.00 | 0.60 to 0.80 |
| 21   | 2.0×1.25 | 1.00 to 1.30 | 1.00 to 1.20 | 0.80 to 1.10 |
| 316  | 3.2×1.6  | 2.10 to 2.50 | 1.10 to 1.30 | 1.00 to 1.30 |
| 32   | 3.2×2.5  | 2.10 to 2.50 | 1.10 to 1.30 | 1.90 to 2.30 |
| 42   | 4.5×2.0  | 2.50 to 3.20 | 1.80 to 2.30 | 1.50 to 1.80 |
| 43   | 4.5×3.2  | 2.50 to 3.20 | 1.80 to 2.30 | 2.60 to 3.00 |
| 52   | 5.7×2.0  | 4.20 to 4.70 | 2.00 to 2.50 | 1.50 to 1.80 |
| 55   | 5.7×5.0  | 4.20 to 4.70 | 2.00 to 2.50 | 4.20 to 4.70 |


<sup>\*</sup> CA series : Please refer product specifications.

## **DN/DR Automotire Series**

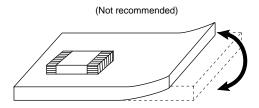
(Unit: mm)

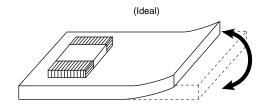
| Size | L×W      | а            | b            | С            |
|------|----------|--------------|--------------|--------------|
| 105  | 1.6×0.8  | 0.60 to 0.90 | 0.80 to 1.00 | 0.70 to 1.00 |
| 21   | 2.0×1.25 | 0.90 to 1.20 | 0.80 to 1.20 | 0.90 to 1.40 |
| 316  | 3.2×1.6  | 1.40 to 1.90 | 1.00 to 1.30 | 1.30 to 1.80 |

#### **Ideal Solder Thickness**



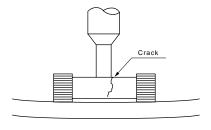
## Typical mounting problems

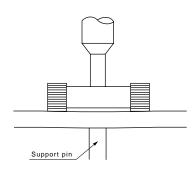

| rypical inounting                |                     |                                                |
|----------------------------------|---------------------|------------------------------------------------|
| Item                             | Poor example        | Recommended example/Separated by solder resist |
| Multiple parts mount             |                     | Solder resist                                  |
| Mount with<br>leaded parts       | Leaded parts        | Solder resist  Leaded parts                    |
| Wire soldering<br>after mounting | Soldering iron Wire | Solder resist                                  |
| Overview                         | Solder resist       | Solder resist                                  |




#### **Mounting Design**

The chip could crack if the PCB warps during processing after the chip has been soldered.


## Recommended chip position on PCB to minimize stress from PCB warpage






## **Actual Mounting**

- 1) If the position of the vacuum nozzle is too low, a large force may be applied to the chip capacitor during mounting, resulting in cracking.
- 2) During mounting, set the nozzle pressure to a static load of 100 to 300 gf.
- 3) To minimize warpage of the PCB from the shock of the vaccum nozzle, provide a support pin on the back of the PCB to minimize PCB flexture.





- 4) When the positioning hook begins to wear, unstable force may be applied to the chip, resulting in cracking.
- 5) To reduce the possibility of chipping and cracks, minimize vibration to chips stored in a bulk case.
- 6) The discharge pressure must be adjusted to the part size. Verify the pressure during setup to avoid fracturing or cracking the chips.

#### **Resin Mold**

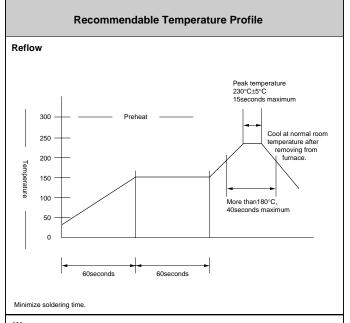
- 1) If a large amount of resin is used for molding the chip, cracks may occur due to contraction stress during curing. To avoid such cracks, use a low shrinkage resin.
- 2) The insulation resistance of the chip will degrade due to moisture absorption. Use a low moisture absorption resin.
- 3) Check carefully that the resin does not generate a decomposition gas or reaction gas during the curing process or during normal storage. Such gases may crack the chip capacitor or damage the device itself.

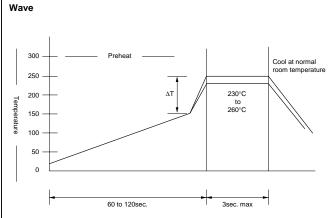


# **Multilayer Ceramic Chip Capacitors Surface Mounting Information**

#### **Soldering Method**

- 1) Ceramic is easily damaged by rapid heating or cooling. If some heat shock is unavoidable, limit the temperature difference ( $\Delta T$ ) to within
- 2) Please see our recommended soldering conditions.


## **PCB Mounting Precautions**

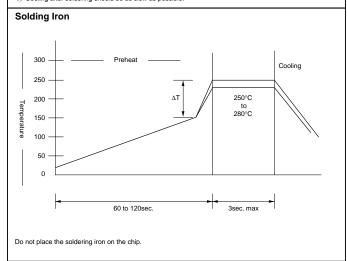

If the PCB becomes excessively bent either before or after mounting of the chip capacitor, the chip capacitor may crack or chip. Take precautions to reduce PCB flexure.

## **Special Precautions for Using Soldering Irons**

Preheat the capacitors to approx. 150°C.

Solder quickly on a hot plate using a soldering iron adjusted to 250 to 280°C.






- ① If a chip capacitor smaller than type CM316 is used with a wave soldering tank, use the Nickel-barrier
- type to minimize solder leaching. This may not be necessary with a static soldering tank.)

  ② Ensure that the chip capacitor is preheated adequately.

  ③ Ensure that the temperature difference (ΔT) does not exceed 130°C.

  ④ Cooling after soldering should be as slow as possible.

